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PREVIOUS KNOWLEDGE 

 Knowledge of finding the area bounded 

by a line and a curve. 

 Standard equation of circle, parabola 

and ellipse . 



AREA BETWEEN TWO CURVES 

Consider two intersecting curves whose 

equations are y = f(x) and y = g(x) . Let us try 

to find the area bounded by these two curves. 

Let the point of intersection  of these two 

curves be x = a and x = b . 

Assume that f(x) ≥ g(x) . For finding the 

elementary area take an elementary strip with 

height f(x) –g(x) and width dx . Then if dA 

denote the elementary area dA = [ f(x) –g(x) ] 

dx. Hence total area  

A =  [𝑓 𝑥 − 𝑔(𝑥)
𝑏

𝑎
]𝑑𝑥 



Here f(x) ≥ g(x)  

𝐴 =  𝑓 𝑥 𝑑𝑥 −  𝑔 𝑥 𝑑𝑥
𝑏

𝑎

𝑏

𝑎
  

A = [area bounded by y = f (x), x-axis and the lines x = a, x = b] 

     – [area bounded by y = g (x), x-axis and the lines x = a, x = b]  

        where f(x) ≥ g(x) in [ a , b] 



Consider another case where f (x) ≥ g (x) in [a, c] and 

 f (x) ≤ g (x) in [c, b], where a < c < b (Fig ) then the 

area of the regions bounded by the curves can be 

written as 

Total Area = Area of the region ACBDA + Area of the 

region BPRQB 

f(x) ≤ g(x)  

f(x) ≥ g(x) 

Total Area  =  𝑓 𝑥 − 𝑔 𝑥 𝑑𝑥 +  𝑔 𝑥 − 𝑓 𝑥 𝑑𝑥
𝑏

𝑐

𝑐

𝑎
 



EXAMPLES 

Q1. Find the area bounded by the curve 𝑥2 = 4𝑦 and the 

      line 𝑥 = 4𝑦 − 2. 
Solution: 

We need to find the area of 

shaded region. First we find 

points A and B 

𝑥2 = 4𝑦…….(1)       

𝑥 = 4𝑦 − 2 ………(2) 



From( 1) and (2) 

     4𝑦 − 2 2= 4𝑦 ⇒ 16𝑦2 − 20𝑦 + 4 = 0 

    4𝑦2 − 5𝑦 + 1 = 0 ⇒ 4𝑦 − 1 𝑦 − 1 = 0    

⇒ 𝑦 =
1

4
 𝑜𝑟 1 

Put values of y in eq (2), we get 𝑥 =  −1 𝑎𝑛𝑑 2 

Therefore the points are 𝐴 −1,
1

4
𝑎𝑛𝑑 𝐵 2, 1 . 
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Q2.Find the area of the circle 4x2 + 4y2 = 9 which is 

interior to the parabola x2 = 4y 

Solution: 

Solving the given equation of circle, 4x2 + 4y2 = 9, and 

parabola, x2 = 4y, we obtain the point of intersection as 

B 2 ,
1

2
and D ( 𝑓𝑖𝑔𝑢𝑟𝑒) 



The required area is represented by 

the shaded area OBCDO. The area is 

symmetrical about y –axis 

Required area = 2 Area OBCO  

 Draw BM perpendicular to OA. 

Therefore, the coordinates of M are 

2, 0 . 

Area OBCO = Area OMBCO – Area OMBO 
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Required area = 2 Area OBCO  
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Q3.Find the area bounded by curves (x – 1)2 + y2 = 1 

and x2 + y 2 = 1 

Solution:  

The area bounded by the curves, 

(x – 1)2 + y2 = 1 and x2 + y 2 = 1, 

is represented by the shaded area.  

Solving the two equations we get 

the point of intersection as  

A 
1

2
,
3

2
 and B 

1

2
,
; 3

2
 .  

The required area is symmetrical about x-axis. 

∴ Area OBCAO = 2 × Area OCAO 

Join AB, which intersects OC at M, such that AM is 

perpendicular to OC. The coordinates of M are 
1

2
, 0   



Area OCAO = Area OMAO +Area MCAM 
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Therefore, required  OBCAO = 2 × Area OCAO 
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